How do you solve using the quadratic form? 2x^2+3x-3=-3x-4

3 Answers
May 8, 2018

Do you mean the quadratic formula?
#x=-0.1771243445 or x=-2.822875656#

Explanation:

#2x^2+3x-3=-3x-4# collect like terms on the LHS

#2x^2+6x+1=0#

#a=2, b=6 and c=1#
#x=[-6\pmsqrt(6^2-[4xx2xx1])]/[2xx2]#

#x=[-6\pmsqrt(36-8)]/[4]#

#x=[-6\pmsqrt28]/[4]#

#x=[-6\pm2sqrt7]/[4]#

#x=(-3+sqrt7)/2# or #x=(-3-sqrt7)/2#

#x=-0.1771243445 or x=-2.822875656#

May 8, 2018

#2 x^2+3 x-3=-3 x-4#

Explanation:

#a x^2+b x+c=0#
#x_(1,2)=(-b +- \sqrt(b^2-4*a*c))/(2*a)#

Write your equation in the form: #a x^2+b x+c=0#
#2 x^2+3 x-3=-3 x-4# | #+3x#
#2 x^2+3 x-3 +3x=-3 x-4 +3x# |#+4#
#2 x^2+6 x-3+4=-4 +4#
#2 x^2+6 x+1=0#

#a=2#
#b=6#
#c=1#

#x_(1,2)=(-6 +- \sqrt(6^2-4*2*1))/(2*2)=#
#=(-6 +- \sqrt(36-8))/(4)=#
#=(-6 +- \sqrt(28))/(4)=#
#=(-6 +- \sqrt(2^2*7))/(4)=#
#=(-6 +- 2* \sqrt(7))/(4)=#
#=(-3 +- \sqrt(7))/(2)#

#x_1=(-3 + \sqrt(7))/(2)#
#x_2=(-3 - \sqrt(7))/(2)#

May 8, 2018

#x=(-3+sqrt7)/2 or x=(-3-sqrt7)/2#

Explanation:

Here,

#2x^2+3x-3=-3x-4#

#=>2x^2+3x-3+3x+4=0#

#=>2x^2+6x+1=0#

Comparing with #ax^2+bx+c=0#,

#a=2,b=6 and c=1#

So,

#triangle=b^2-4ac=36-4(2)(1)=36-8=28#

#sqrt(triangle)=2sqrt7#

#:.x=(-b+-sqrt(triangle))/(2a)=(-6+-2sqrt7)/(2(2))=(-3+-sqrt7)/2#

Hence,

#x=(-3+sqrt7)/2 or x=(-3-sqrt7)/2#