f(x)=(x^2+1)/x^2 , A=(-oo,0)uu(0,+oo)
f'(x)=((x^2+1)'x^2-(x^2)'(x^2+1))/x^4=
(2x^3-2x^3-2x)/x^4=
-2/x^3
For x>0 we have f'(x)<0 so f is strictly decreasing in (0,+oo)
For x<0 we have f'(x)>0 so f is strictly increasing in (-oo,0)
A_1=(-oo,0), A_2=(0,+oo)
lim_(xrarr0^(-))f(x)=lim_(xrarr0^(-))(x^2+1)/x^2=+oo
lim_(xrarr0^(+))f(x)=lim_(xrarr0^(+))(x^2+1)/x^2=+oo
lim_(xrarr-oo)f(x)=lim_(xrarr-oo)(x^2+1)/x^2=lim_(xrarr-oo)x^2/x^2=1
lim_(xrarr+oo)f(x)=lim_(xrarr+oo)(x^2+1)/x^2=1
f(A_1)=f(((-oo,0)))=(lim_(xrarr-oo)f(x),lim_(xrarr0^(-))f(x))=
(1,+oo)
f(A_2)=f(((0,+oo)))=(lim_(xrarr+oo)f(x),lim_(xrarr0^+)f(x))=(1,+oo)
Range =f(A)=f(A_1)uuf(A_2)=(1,+oo)