Find the range of the function f(x) = (1+ x^2)/x^2 ?

1 Answer
May 10, 2018

f(A) = (1,+oo)

Explanation:

f(x)=(x^2+1)/x^2 , A=(-oo,0)uu(0,+oo)

f'(x)=((x^2+1)'x^2-(x^2)'(x^2+1))/x^4=

(2x^3-2x^3-2x)/x^4=

-2/x^3

For x>0 we have f'(x)<0 so f is strictly decreasing in (0,+oo)

For x<0 we have f'(x)>0 so f is strictly increasing in (-oo,0)

A_1=(-oo,0), A_2=(0,+oo)

lim_(xrarr0^(-))f(x)=lim_(xrarr0^(-))(x^2+1)/x^2=+oo
lim_(xrarr0^(+))f(x)=lim_(xrarr0^(+))(x^2+1)/x^2=+oo
lim_(xrarr-oo)f(x)=lim_(xrarr-oo)(x^2+1)/x^2=lim_(xrarr-oo)x^2/x^2=1
lim_(xrarr+oo)f(x)=lim_(xrarr+oo)(x^2+1)/x^2=1

f(A_1)=f(((-oo,0)))=(lim_(xrarr-oo)f(x),lim_(xrarr0^(-))f(x))=

(1,+oo)

f(A_2)=f(((0,+oo)))=(lim_(xrarr+oo)f(x),lim_(xrarr0^+)f(x))=(1,+oo)

Range =f(A)=f(A_1)uuf(A_2)=(1,+oo)