#f(x)=(x^2+1)/x^2# , #A=(-oo,0)uu(0,+oo)#
#f'(x)=((x^2+1)'x^2-(x^2)'(x^2+1))/x^4=#
#(2x^3-2x^3-2x)/x^4=#
#-2/x^3#
For #x>0# we have #f'(x)<0# so #f# is strictly decreasing in #(0,+oo)#
For #x<0# we have #f'(x)>0# so #f# is strictly increasing in #(-oo,0)#
#A_1=(-oo,0)#, #A_2=(0,+oo)#
#lim_(xrarr0^(-))f(x)=lim_(xrarr0^(-))(x^2+1)/x^2=+oo#
#lim_(xrarr0^(+))f(x)=lim_(xrarr0^(+))(x^2+1)/x^2=+oo#
#lim_(xrarr-oo)f(x)=lim_(xrarr-oo)(x^2+1)/x^2=lim_(xrarr-oo)x^2/x^2=1#
#lim_(xrarr+oo)f(x)=lim_(xrarr+oo)(x^2+1)/x^2=1#
#f(A_1)=f(((-oo,0)))=(lim_(xrarr-oo)f(x),lim_(xrarr0^(-))f(x))=#
#(1,+oo)#
#f(A_2)=f(((0,+oo)))=(lim_(xrarr+oo)f(x),lim_(xrarr0^+)f(x))=(1,+oo)#
Range #=f(A)=f(A_1)uuf(A_2)=(1,+oo)#