Please solve q 42 ?

enter image source here

2 Answers
May 11, 2018

#(MC)/(AM)=3#

Explanation:

enter image source here
Given #CL=AL=2BL#,
let #CL=AL=2a, => BL=a#
#DeltaCLA# is a right triangle,
#=> AC^2=CL^2+AL^2=(2a)^2+(2a)^2=8a^2#,
#=> AC=2asqrt2#
#DeltaALB# is also a right triangle,
#AB^2=AL^2+LB^2=(2a)^2+a^2=5a^2#
#=> AB=sqrt5a#
Let #|ABC|# be area of #DeltaABC#,
#=> |ABC|=1/2*CB*AL=1/2*3a*2a=3a^2#
#=> |ABC|=1/2*AB*MC=3a^2#
#=> 1/2*sqrt5a*MC=3a^2#
#=> MC=(2*(3a^2))/(sqrt5a)=(6a)/sqrt5#
Similarly, #AM^2=AC^2-MC^2=(2asqrt2)^2-((6a)/sqrt5)^2=(4a^2)/5#
#=> AM=sqrt((4a^2)/5)=(2a)/sqrt5#

#=> (MC)/(AM)=((6a)/sqrt5)/((2a)/sqrt5)=3#

May 11, 2018

#(MC)/(AM)=3

Explanation:

solution 2
enter image source here
given #CL=AL=2BL#,
let #CL=AL=2a, => BL=a#
#DeltaALB# is a right triangle
#AB^2=AL^2+LB^2=(2a)^2+a^2=5a^2#
#=> AB=sqrt5a#,
Area of #DeltaABC=1/2*CB*AL=1/2*AB*MC#
#=> MC=(CB*AL)/(AB)=(3a*2a)/(sqrt5a)=(6a)/sqrt5#
#DeltaCMB and DeltaALB# are similar
#=> (CM)/(MB)=(AL)/(AB)=2/1#
#=> MB=1/2*CM=(6a)/(2sqrt5)=(3a)/sqrt5#
#=> AM=AB-MB=sqrt5a-(3a)/sqrt5#
#=(5a-3a)/sqrt5=(2a)/sqrt5#

#=> (MC)/(AM)=((6a)/sqrt5)/((2a)/sqrt5)=3#