Let angleDCQ=x∠DCQ=x,
given DC=DQ, => angleDQC=angleDCQ=xDC=DQ,⇒∠DQC=∠DCQ=x,
let angleCDB=y and angleBDP=z, => angleCDP=y+z∠CDB=yand∠BDP=z,⇒∠CDP=y+z
given CP=CD, => angleCPD=angleCDP=y+zCP=CD,⇒∠CPD=∠CDP=y+z
In DeltaQDC, 2x+y=180^@ ----- Eq(1)
As ABCD is a cyclic quadrilateral,
=> angleBCA=angleBDA=z
In DeltaPDC, x+2y+3z=180^@ ----- Eq(2)
Eq(1)=Eq(2), => 2x+y=x+2y+3z,
=> color(red)(x=y+3z)
Substituting x=y+3z into Eq(2), we get:
y+3z+2y+3z=180^@
=> 3y+6z=180, => 3(y+2z)=180
=> color(red)(y+2z=180/3=60^@)
In DeltaADC, angleCAD=180-(x+y+z)
=180-(y+3z+y+z)
=180-(2y+4z)
=180-2(y+2z)
=180-(2*60)=180-120=60^@