Please solve q 18?

enter image source here

1 Answer
May 12, 2018

#angleCAD=60^@#

Explanation:

enter image source here
Let #angleDCQ=x#,
given #DC=DQ, => angleDQC=angleDCQ=x#,
let #angleCDB=y and angleBDP=z, => angleCDP=y+z#
given #CP=CD, => angleCPD=angleCDP=y+z#
In #DeltaQDC, 2x+y=180^@ ----- Eq(1)#
As #ABCD# is a cyclic quadrilateral,
#=> angleBCA=angleBDA=z#
In #DeltaPDC, x+2y+3z=180^@ ----- Eq(2)#
#Eq(1)=Eq(2), => 2x+y=x+2y+3z#,
#=> color(red)(x=y+3z)#
Substituting #x=y+3z# into #Eq(2)#, we get:
#y+3z+2y+3z=180^@#
#=> 3y+6z=180, => 3(y+2z)=180#
#=> color(red)(y+2z=180/3=60^@)#
In #DeltaADC, angleCAD=180-(x+y+z)#
#=180-(y+3z+y+z)#
#=180-(2y+4z)#
#=180-2(y+2z)#
#=180-(2*60)=180-120=60^@#