What is the integral of #int(sec^2x)/sqrt(4-sec^2x)dx# ?

#int(sec^2x)/sqrt(4-sec^2x)dx#

1 Answer
May 12, 2018

The answer of this question=#sin^(-1)(tanx/sqrt3)#

Explanation:

For this take tanx=t
Then #sec^2x dx=dt#

Also #sec^2x= 1+tan^2x#
Putting these value in original equation we get
#intdt/(sqrt(3-t^2))#

#=sin^(-1)(t/sqrt3)#

=#sin^(-1)(tanx/sqrt3)#

Hope it helps!!