Let tan x = 2.4, sin y = 0.6, and both x and y be between 0° and 90°. Then cos(x + y) equals?

2 Answers
May 12, 2018

1665

Explanation:

enter image source here

enter image source here

May 13, 2018

cos (x + y) = - 0.246

Explanation:

Use trig identity:
cos (x + y) = cos x.cos y - sin x.sin y (1)
First, find cos y knowing sin y = 0.6
cos2y=1sin2y=10.36=0.64
cosy=0.8 (because y is in Quadrant 1)
Next, find sin x and cos x, knowing tan x = 2.4.
cos2x=11+tan2x=11+5.76=16.76
cosx=12.6 (because x is in Q. 1)
sin2x=1cos2x=116.76=5.766.76
sinx=2.42.6
Replace all numeric values into equation (1), we get:
cos(x+y)=(12.6)(0.8)(2.42.6)(0.6)=0.82.61.442.6
cos(x+y)=0.642.6=0.246
Check by calculator.
siny=0.6 --> y=3687
cosx=12.6 --> x=6738
x+y=36.87+67.38=10425 --> cos 104.25 = - 0.246. OK