1.
(g+k)(x)=g(x)+k(x)=(g+k)(x)=g(x)+k(x)=
=x-3+2*x=3*(x-1)=x−3+2⋅x=3⋅(x−1)
2.
(h*k)(x)=h(x)*k(x)(h⋅k)(x)=h(x)⋅k(x)
=(x^2-9)*(2*x)=2*x^3-18x=(x2−9)⋅(2⋅x)=2⋅x3−18x
3.
h(g(x))=(g(x))^2-9=(x-3)^2-9=h(g(x))=(g(x))2−9=(x−3)2−9=
=x^2-2*3*x+9-9=x^2-6*x=x2−2⋅3⋅x+9−9=x2−6⋅x
4.
We can use the) result of 3. replacing xx with k(x)k(x)
h(g(k(x)))=(k(x))^2-6*k(x)=(2*x)^2-6*2*x=h(g(k(x)))=(k(x))2−6⋅k(x)=(2⋅x)2−6⋅2⋅x=
=4*x^2-12x=4⋅x2−12x