What is the measure of angle c?
↳Redirected from
"What are valence electrons?"
Since ABCD is a cyclic quadrilateral,
then
#angle ABC + angle ADC = 180#
(opposite angles in cyclic quadrilateral are equal to 180 degrees)
#2x+3+4x+3=180#
#6x+6=180#
#6x=174#
#x=29#
Since #angle BCD = 2x+1#, then you just sub in #x=29#
ie. #angle BCD = 2(29)+1 = 59#
Opposite angles in a cyclic quadrilateral are supplementary.
So:
#/_B+/_D=180^@#
#/_B+/_D=(2x+3)+(4x+3)=180^@#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=6x+6=180#
#x=(180-6)/6=29^@#
#/_C=2x+1=2(29)+1=59^@#
Measure of #color(indigo )(hat C = 59^@#
Given #hatB = 2x + 3, hat C = 2x + 1, hat D = 4x + 3#
To find measure of #hat C#
It’s a cyclic quadrilateral and hence sum of opposite angles equals #180^@#
i. e. #hat A + hat C = hat B + hat D = pi^c = 180^@#
#hat B + hat D = 2x + 3 + 4x + 3 = 180^@#
#6x + 6 = 180#
#x = (180 - 6) / 6 = 29^@#
#hat C = 2x + 1 = (2*29 + 1) = 59^@#