How to find the general solution for #xy (dy/dx - 1)= x^2 + y^2# ?
Homogeneous differential equations
Homogeneous differential equations
1 Answer
May 20, 2018
Explanation:
Given
#xy(y'-1)=x^2+y^2#
Rearrange:
#y'=1+x/y+y/x#
Apply the substitution
#v+xv'=1+1/v+v#
Simplify and collect like terms:
#v/(v+1)v'=1/x#
Form the integral:
#int(1-1/(v+1))dv=int1/xdx#
Integrate term by term:
#v-ln|v+1|=ln|x|+C#
Simplify:
#v=ln|xv+x|+C#
Reverse the substitution:
#y/x=ln|y+x|+C#