How to find the general solution for xy (dy/dx - 1)= x^2 + y^2xy(dydx−1)=x2+y2 ?
Homogeneous differential equations
Homogeneous differential equations
1 Answer
May 20, 2018
Explanation:
Given
xy(y'-1)=x^2+y^2
Rearrange:
y'=1+x/y+y/x
Apply the substitution
v+xv'=1+1/v+v
Simplify and collect like terms:
v/(v+1)v'=1/x
Form the integral:
int(1-1/(v+1))dv=int1/xdx
Integrate term by term:
v-ln|v+1|=ln|x|+C
Simplify:
v=ln|xv+x|+C
Reverse the substitution:
y/x=ln|y+x|+C