Solve the inequality 1/x<or=|x-2| for real numbers?

1 Answer
May 22, 2018

S:x in ]-oo;0[uu[1+sqrt2;+oo[

Explanation:

1/x<=|x-2|

D_f:x in RR^"*"

for x<0:

1/x<=-(x-2)

1> -x²-2x

x²+2x+1>0

(x+1)²>0

x in RR^"*"

But here we have the condition that x<0, so:

S_1:x in RR_"-"^"*"

Now, if x>0:

1/x<=x-2

1<=x²-2x

x²-2x-1>=0
Δ=8

x_1=(2+sqrt8)/2=1+sqrt2

cancel(x_2=1-sqrt2) (<0)

So S_2:x in [1+sqrt2;+oo[

Finally S=S_1uuS_2

S:x in ]-oo;0[uu[1+sqrt2;+oo[

\0/ here's our answer!