How do you solve #4x^2-3x-7=0# using the quadratic formula?

2 Answers
May 23, 2018

#x=7/4#,x=-1

Explanation:

a = 4, b = -3, c = -7
D = #b^2-4ac#
= #(-3)^2-4*4*(-7)#
= #9+112#
=#121#
#sqrt(D)=11#
#x=(-b+-sqrt(D))/(2a)#
= #(-(-3)+-11)/(2*4)#
= #(3+-11)/8#
= #(3+11)/8,(3-11)/8#
= #14/8,-8/8#
= #7/4,-1#

May 23, 2018

Solution: # x =-1 , x= 1.75#

Explanation:

# 4 x^2 -3 x-7=0#

Comparing with standard quadratic equation #ax^2+bx+c=0#

# a= 4 ,b=-3 ,c=-7#. Discriminant # D= b^2-4 a c# or

#D=9+112 =121# ,discriminant positive, we get two real

solutions. Quadratic formula: #x= (-b+-sqrtD)/(2a) #or

#x= (3+-sqrt 121)/8 or x = (3 +- 11)/8# or

# x = 14/8=1.75 , x = -8/8= -1#

Solution: # x =-1 , x= 1.75# [Ans]