3root98-root405+root500-root72?

2 Answers
May 23, 2018

#15sqrt2+sqrt5#

Explanation:

#3sqrt98 - sqrt405+sqrt500-sqrt72#
(I take "3root" to mean 3 times the square root, i.e. #3sqrt98#, and not "cubic root", i.e. #root3(98)#.)

We need to factorise this expression to see if there are any common factors here. We notice that:
#98=2*49=2*7^2#
#405=9*45=5*9^2# (9 is a factor is 405 since 4+0+5=9)
#500=25*20=5^2*5*4=5^3*2^2=5*10^2#
#72=9*8=2*6^2#

Therefore:
#3sqrt(2*7^2) - sqrt(5*9^2)+sqrt(5*10^2)-sqrt(2*6^2)#
Move the square numbers outside and take the square root of each:
#3*7sqrt2-9sqrt5 + 10sqrt5-6sqrt2#
Rearrange so that roots that belong together, come together:
#(21-6)sqrt2+(10-9)sqrt5=15sqrt2+sqrt5#

May 23, 2018

#15sqrt2+sqrt5#

Explanation:

#3sqrt98-sqrt 405+sqrt 500-sqrt 72#

#:.=3sqrt(2*7*7)-sqrt(5*9*9)+sqrt(5*10*10)-sqrt(3*3*2*2*2)#

#:.=3*7 sqrt 2-9 sqrt 5+10 sqrt 5-2*3 sqrt 2#

#:.=21 sqrt 2-9 sqrt 5+10 sqrt 5-6 sqrt 2#

#:.=15 sqrt 2+sqrt 5#