Show that #f# is strictly increasing in #RR# ?
#f:RR->RR# differentiable with #f'# continuous in #RR# , #f(0)=0# , #f(1)=1#
#f(f(x))+f(x)=2x# ,
#AA# #x# #in# #RR#
Show that #f# is strictly increasing in #RR#
#f(f(x))+f(x)=2x# ,
Show that
1 Answer
May 24, 2018
Sign/contradiction & Monotony
Explanation:
If
Hence,
#f'# is continuous in#RR# #f'(x)!=0# #AA# #x# #in# #RR#
If
But we have
Therefore,