Let GG be the centroid where medians AD and BEADandBE meet.
As AG:GD=BG:GE=2:1AG:GD=BG:GE=2:1,
let AG=2y, => GD=yAG=2y,โGD=y,
let BG=2x, => GE=xBG=2x,โGE=x
In DeltaBGD, (2x)^2+y^2=(7/2)^2
=> 4x^2+y^2=(49)/4 ----- Eq(1)
In DeltaAGE, x^2+(2y)^2=3^2,
=> x^2+4y^2=9 ----- Eq(2)
Adding Eq(1) and Eq(2) together, we get:
5x^2+5y^2=49/4+9
=> 5(x^2+y^2)=85/4
=> color(red)(x^2+y^2=17/4)
In AGB, AB^2=(2x)^2+(2y)^2
=> AB^2=4(x^2+y^2)=4*(17)/4=17
=> AB=sqrt17 units