Evaluate the integrals : 3x^2 sqr(x^3+1)dx?

1 Answer
May 27, 2018

#I=2/3(x^3+1)^(3/2)+C#

Explanation:

We want to solve

#I=int3x^2sqrt(x^3+1)dx#

Make a substitution #color(blue)(u=x^3+1=>du=3x^2dx#

#I=intsqrt(u)du=intu^(1/2)du#

By the power rule for integration #color(red)(intx^ndx=x^(n+1)/(n+1)+C#

#I=u^(1/2+1)/(1/2+1)+C=u^(3/2)/(3/2)+C=2/3u^(3/2)+C#

Substitute back #color(blue)(u=x^3+1#

#I=2/3(x^3+1)^(3/2)+C#