How do you integrate ? 1/(x^2+9)^(1/2)

2 Answers
May 27, 2018

y=int1/sqrt(x^2+9) dx

put x=3 tantrArr t=tan^-1(x/3)
Hence, dx= 3sec^2tdt

y=int(3sec^2t)/sqrt(9tan^2t+9) dt

y=int(sec^2t)/sqrt(tan^2t+1) dt

y=int(sec^2t)/sqrt(sec^2t) dt

y=int(sec^2t)/(sect) dt

y=int(sect) dt

y=ln|sec t + tan t| + C

y=ln|sec( tan^-1(x/3) )+ tan (tan^-1(x/3))| + C

y=ln|sec( tan^-1(x/3) )+ x/3)| + C

y=ln|sqrt(1+x^2/9 )+ x/3| + C

May 27, 2018

We know that,
int1/sqrt(X^2+A^2) dX=ln|X+sqrt(X^2+A^2)|+c
So,
I=int1/(x^2+9)^(1/2) dx=int1/sqrt(x^2+3^2)dx
=>I=ln|x+sqrt(x^2+9)|+c

Explanation:

II^(nd) method : Trig. subst.

I=int1/(x^2+9)^(1/2) dx

Take, x=3tanu=>dx=3sec^2udu

and color(blue)(tanu=x/3

So,

I=int1/(9tan^2u+9)^(1/2) 3sec^2udu

=int(3sec^2u)/((9sec^2u)^(1/2))du

=int(3sec^2u)/(3secu)du

=intsecudu

=ln|secu+tanu|+c

=ln|sqrt(tan^2u+1)+tanu|+c , where, color(blue)(tanu=x/3

:.I=ln|sqrt(x^2/9+1)+x/3|+c

=ln|sqrt(x^2+9)/3+x/3|+c

=ln|(sqrt(x^2+9)+x)/3|+c

=ln|sqrt(x^2+9)+x|-ln3+c

=ln|x+sqrt(x^2+9)|+C,where, C=c-ln3