∫e^(-mx).x^(7)dx Limits zero to infinity ????
1 Answer
Explanation:
We want to solve
#I=int_0^oo x^7e^(-mx)dx#
Consider a slightly different problem
#I_0=int_0^oo e^(-mx)dx=1/m#
By repeated differentiation of both sides w.r.t. m
(Notice how the negative sign cancels out each time)
#I_1=int_0^oo xe^(-mx)dx=1/m^2#
#I_2=int_0^oo x^2e^(-mx)dx=(1*2)/m^3#
#I_3=int_0^oo x^3e^(-mx)dx=(1*2*3)/m^4#
#I_4=int_0^oo x^4e^(-mx)dx=(1*2*3*4)/m^5#
We may have spotted the pattern, for the general case
#I_n=int_0^oo x^ae^(-mx)dx=(a!)/m^(a+1)#
Or for your case
#I_7=int_0^oo x^7e^(-mx)dx=(7!)/m^8#
Bonus info
Consider the integral we found
#int_0^oo x^ae^(-mx)dx=(a!)/m^(a+1)#
For the case
#Gamma(a+1)=int_0^oo x^ae^(-x)dx=a!#
This is an extended definition of the factorial
From this definition, results which seems odd by our usually definition can be derived
As example
#(0!)=1# and#(1/2!)=sqrt(pi)/2#