∫e^(-mx).x^(7)dx Limits zero to infinity ????
1 Answer
Explanation:
We want to solve
I=int_0^oo x^7e^(-mx)dxI=∫∞0x7e−mxdx
Consider a slightly different problem
I_0=int_0^oo e^(-mx)dx=1/mI0=∫∞0e−mxdx=1m
By repeated differentiation of both sides w.r.t. m
(Notice how the negative sign cancels out each time)
I_1=int_0^oo xe^(-mx)dx=1/m^2I1=∫∞0xe−mxdx=1m2
I_2=int_0^oo x^2e^(-mx)dx=(1*2)/m^3I2=∫∞0x2e−mxdx=1⋅2m3
I_3=int_0^oo x^3e^(-mx)dx=(1*2*3)/m^4I3=∫∞0x3e−mxdx=1⋅2⋅3m4
I_4=int_0^oo x^4e^(-mx)dx=(1*2*3*4)/m^5I4=∫∞0x4e−mxdx=1⋅2⋅3⋅4m5
We may have spotted the pattern, for the general case
I_n=int_0^oo x^ae^(-mx)dx=(a!)/m^(a+1)In=∫∞0xae−mxdx=a!ma+1
Or for your case
I_7=int_0^oo x^7e^(-mx)dx=(7!)/m^8I7=∫∞0x7e−mxdx=7!m8
Bonus info
Consider the integral we found
int_0^oo x^ae^(-mx)dx=(a!)/m^(a+1)∫∞0xae−mxdx=a!ma+1
For the case
Gamma(a+1)=int_0^oo x^ae^(-x)dx=a!
This is an extended definition of the factorial
From this definition, results which seems odd by our usually definition can be derived
As example
(0!)=1 and(1/2!)=sqrt(pi)/2