∫e^(-mx).x^(7)dx Limits zero to infinity ????

1 Answer
Jun 1, 2018

I=(7!)/m^8I=7!m8

Explanation:

We want to solve

I=int_0^oo x^7e^(-mx)dxI=0x7emxdx

Consider a slightly different problem

I_0=int_0^oo e^(-mx)dx=1/mI0=0emxdx=1m

By repeated differentiation of both sides w.r.t. m
(Notice how the negative sign cancels out each time)

I_1=int_0^oo xe^(-mx)dx=1/m^2I1=0xemxdx=1m2
I_2=int_0^oo x^2e^(-mx)dx=(1*2)/m^3I2=0x2emxdx=12m3
I_3=int_0^oo x^3e^(-mx)dx=(1*2*3)/m^4I3=0x3emxdx=123m4
I_4=int_0^oo x^4e^(-mx)dx=(1*2*3*4)/m^5I4=0x4emxdx=1234m5

We may have spotted the pattern, for the general case

I_n=int_0^oo x^ae^(-mx)dx=(a!)/m^(a+1)In=0xaemxdx=a!ma+1

Or for your case color(blue)(a=7a=7

I_7=int_0^oo x^7e^(-mx)dx=(7!)/m^8I7=0x7emxdx=7!m8

Bonus info

Consider the integral we found

int_0^oo x^ae^(-mx)dx=(a!)/m^(a+1)0xaemxdx=a!ma+1

For the case color(blue)(m=1m=1, this is what we call the gamma function

Gamma(a+1)=int_0^oo x^ae^(-x)dx=a!

This is an extended definition of the factorial

From this definition, results which seems odd by our usually definition can be derived
As example

(0!)=1 and (1/2!)=sqrt(pi)/2