Let |ABC||ABC| denote area of ABCABC,
let color(red)(|ABCD|=18a), => |ABD|=(18a)/2=9a|ABCD|=18a,⇒|ABD|=18a2=9a,
as DE:DA=1:3, => |EBD|=1/3*|ABD|=1/3*9a=3aDE:DA=1:3,⇒|EBD|=13⋅|ABD|=13⋅9a=3a
=> color(red)(|EBKD|)=2*|EBD|=2*3a=color(red)(6a)⇒|EBKD|=2⋅|EBD|=2⋅3a=6a
Now, draw lines EM and KQEMandKQ, parallel to AL and FCALandFC, as shown in the figure.
=> DeltaDEM and DeltaDAN are similar,
=> DE:EA=DM:MN=1:2,
let DM=w, => MN=2w,
similarly, BQ=w, KP=2w
DeltaDNL and DeltaDPC are similar,
=> DL:LC=DN:NP=3:1
as DN=3w, => NP=w
=> "shaded area"=1/6*|EBKD|=1/6*6a=a
Hence, |"shaded area"|/|ABCD|=a/(18a)=1/18