Determine the equation of the tangent to f(x) at x=5 ?

Grade 12 calculus

1 Answer
Jun 3, 2018

Please see below.

Explanation:

.

If #f(x)=sqrt(2x-1#:

Slope of the tangent line to the curve can be calculated by taking the derivative of the function and evaluating it at the point of tangency:

#y=sqrt(2x-1)=(2x-1)^(1/2)#

#m=dy/dx=1/2(2x-1)^(-1/2)(2)=1/2(2(5)-1)^(-1/2)(2)=1/2*9^(-1/2)(2)=1/9^(1/2)=1/sqrt9=1/(+-3)=1/3, -1/3#

Because the function can only be positive,

The equation of the tangent line is:

#y=mx+b#

#y=1/3x+b#

We use the coordinates of the point of tangency to solve for #b#:

#x=5, :. y=sqrt(2(5)-1)=sqrt9=3#

#3=1/3(5)+b#

#9=5+3b#

#3b=4#

#b=4/3#

The equation of the tangent line is:

#y=1/3x+4/3#

Here is the graph of the function and its tangent:

enter image source here

If #f(x)=sqrt(2x)-1#:

#y=sqrt(2x)-1=sqrt2x^(1/2)-1#

#m=dy/dx=sqrt2*1/2x^(-1/2)=sqrt2*1/2(5)^(-1/2)=sqrt2/(2sqrt5)=(sqrt2sqrt5)/10=sqrt10/10#

#x=5, :. y=sqrt(2(5))-1=sqrt10-1#

#y=mx+b#

#y=sqrt10/10x+b#

#sqrt10-1=sqrt10/10(5)+b#

#sqrt10-1=sqrt10/2+b#

#2sqrt10-2=sqrt10+2b#

#sqrt10-2=2b#

#b=(sqrt10-2)/2#

Equation of the tangent line is:

#y=sqrt10/10x+(sqrt10-2)/2#

Here is the graph of the function and its tangent:

enter image source here