What is #(6x^3-18x^2-12x)/(-6x)#?

2 Answers
Jun 3, 2018

#-x^2+3x+2#

Explanation:

#"each term on the numerator is divided by "-6x#

#=(6x^3)/(-6x)-(18x^2)/(-6x)-(12x)/(-6x)#

#=(cancel(6)x^((3-1)))/-cancel(6)-(cancel(18)^3x^((2-1)))/(-cancel(6)^1)-cancel(12x)^2/(-cancel(6x)^1)#

#=-x^2+3x+2#

Jun 3, 2018

#color(crimson)(-x^2+3x+2#

Explanation:

#color(crimson)((6x^3-18x^2-12x)/(-6x)#

#color(white)(..)color(white)(....)-x^2+3x+2#
#-6x|overline(6x^3-18x^2-12x)#
#color(white)(..........)6x^3#
#color(white)(................)overline(-18x^3)#
#color(white)(................)ul(-18x^3)#
#color(white)(..........................)-12x#
#color(white)(............................)ul(-12x)#

#color(crimson)((6x^3-18x^2-12x) / (-6x) = -x^2+3x+2#