Show the identity can be derived from a sum or a difference identity and the pythagorean identity?
#cos(2a)=1-2sin^2a#
1 Answer
Jun 3, 2018
See explanation
Explanation:
Remember the angle sum identity
#color(blue)(cos(x+y)=cos(x)cos(y)-sin(x)sin(y)#
Now let
#cos(a+a)=cos(a)cos(a)-sin(a)sin(a)#
#=>cos(2a)=cos^2(a)-sin^2(a)#
By the pythagorean trig identity
#cos(2a)=(1-sin^2(a))-sin^2(a)#
#=>cos(2a)=1-2sin^2(a) larr color(red)"What we wanted to show"#