Lim of x^3 × e^(-x^2) as x approaches infinity?
1 Answer
Jun 5, 2018
Explanation:
We want to solve
#L=lim_(x->oo)x^3*e^(-x^2)=lim_(x->oo)x^3/e^(x^2)#
Which is an indeterminate form
So we can apply L'Hôpital's rule
#color(blue)(lim_(x->c)f(x)/g(x)=lim_(x->c)(f'(x))/(g'(x))#
Thus
#L=lim_(x->oo)(3x^2)/(2xe^(x^2))=lim_(x->oo)(3x)/(2e^(x^2))#
Again an indeterminate form
#L=lim_(x->oo)(3)/(4xe^(x^2))=0#