A 9.380 mol sample of nitrogen gas is maintained in a 0.8198 L container at 301.8 K. What is the pressure in atm calculated using the van der Waals' equation for N2 gas under these conditions? For N2, a = 1.390 L2atm/mol2 and b = 3.910×10-2 L/mol. atm?
1 Answer
Explanation:
The van der Waals equation is
#color(blue)(bar(ul(|color(white)(a/a) (P + (n^2a)/V^2)(V - nb) = nRTcolor(white)(a/a)|)))" "#
#P + (n^2a)/V^2 = (nRT)/(V - nb)#
#P = (nRT)/(V - nb)- (n^2a)/V^2#
For this problem,
The pressure predicted by the van der Waals equation is 331.0 atm.
Note: The pressure of an ideal gas would be 283.4 atm.
The calculation shows that the volume occupied by the molecules increases the pressure more than the intermolecular attractive forces decreased it.