Given #log_3(5x^2+x−y)=1# then #y=ax^n+x+b#, what is #a#, #b#, #n#?

2 Answers
Jun 7, 2018

#a=5#
#n=2#
#b=-3#

Explanation:

Using the rule of logs, #log_a(a)=1#, we know that #5x^2+x-y=3#

#y=5x^2+x-3#

#a=5#
#n=2#
#b=-3#

Jun 7, 2018

See explanatio.

Explanation:

#log_3(5x^2+x-y)=1#

#log_3(5x^2+x-y)=log_3 3#

#5x^2+x-y=3#

#y=5x^2+x-3#

So we can write that:

#a=5,b=-3, n=2#