Given log_3(5x^2+x−y)=1log3(5x2+xy)=1 then y=ax^n+x+by=axn+x+b, what is aa, bb, nn?

2 Answers
Jun 7, 2018

a=5a=5
n=2n=2
b=-3b=3

Explanation:

Using the rule of logs, log_a(a)=1loga(a)=1, we know that 5x^2+x-y=35x2+xy=3

y=5x^2+x-3y=5x2+x3

a=5a=5
n=2n=2
b=-3b=3

Jun 7, 2018

See explanatio.

Explanation:

log_3(5x^2+x-y)=1log3(5x2+xy)=1

log_3(5x^2+x-y)=log_3 3log3(5x2+xy)=log33

5x^2+x-y=35x2+xy=3

y=5x^2+x-3y=5x2+x3

So we can write that:

a=5,b=-3, n=2a=5,b=3,n=2