How to integrate 1/(x^(3/2)+4) ?

1 Answer
Jun 8, 2018

Use the substitution x12=223u.

Explanation:

Let

I=1x32+4dx

Apply the substitution x12=223u:

I=14u3+4(273udu)

Simplify:

I=213uu3+1du

Factorize the denominator:

I=213u(u2u+1)(u+1)du

Apply partial fraction decomposition:

I=2133(u+1u2u+11u+1)du

Rearrange:

I=21362u+2u2u+1du21331u+1du

For the first term, pull out the a numerator that is the derivative of the denominator:

I=2136(2u1u2u+13u2u+1)du2133ln|u+1|

Hence

I=21362u1u2u+1du21321u2u+1du2133ln|u+1|

Complete the square in the remaining term:

I=2136lnu2u+12132(2u1)2+3du2133ln|u+1|

Apply the substitution 2u1=3tanθ:

I=2136lnu2u+12133dθ2133ln|u+1|

Hence

I=2136lnu2u+12133θ2133ln|u+1|+C

Reverse the last substitution:

I=2136lnu2u+12133tan1(2u13)2133ln|u+1|+C

Rewrite in terms of 223u:

I=2136ln(223u)2223(223u)+2432133tan1213(223u)132133ln223u+223+C

Reverse the first substitution:

I=2136lnx223x+2432133tan1(213x13)2133lnx+223+C