How to integrate 1/(x^(3/2)+4) ?
1 Answer
Use the substitution
Explanation:
Let
I=∫1x32+4dx
Apply the substitution
I=∫14u3+4(273udu)
Simplify:
I=213∫uu3+1du
Factorize the denominator:
I=213∫u(u2−u+1)(u+1)du
Apply partial fraction decomposition:
I=2133∫(u+1u2−u+1−1u+1)du
Rearrange:
I=2136∫2u+2u2−u+1du−2133∫1u+1du
For the first term, pull out the a numerator that is the derivative of the denominator:
I=2136∫(2u−1u2−u+1−3u2−u+1)du−2133ln|u+1|
Hence
I=2136∫2u−1u2−u+1du−2132∫1u2−u+1du−2133ln|u+1|
Complete the square in the remaining term:
I=2136ln∣∣u2−u+1∣∣−213∫2(2u−1)2+3du−2133ln|u+1|
Apply the substitution
I=2136ln∣∣u2−u+1∣∣−213√3∫dθ−2133ln|u+1|
Hence
I=2136ln∣∣u2−u+1∣∣−213√3θ−2133ln|u+1|+C
Reverse the last substitution:
I=2136ln∣∣u2−u+1∣∣−213√3tan−1(2u−1√3)−2133ln|u+1|+C
Rewrite in terms of
I=2136ln∣∣∣(223u)2−223(223u)+243∣∣∣−213√3tan−1⎛⎜⎝213(223u)−1√3⎞⎟⎠−2133ln∣∣223u+223∣∣+C
Reverse the first substitution:
I=2136ln∣∣x−223√x+243∣∣−213√3tan−1(213√x−1√3)−2133ln∣∣√x+223∣∣+C