How do you solve (cscx-cotx)^4(cscx+cotx)^4=1?

1 Answer
Jun 10, 2018

Infinite solutions

Explanation:

.

(cscx-cotx)^4(cscx+cotx)^4=1(cscxcotx)4(cscx+cotx)4=1

((cscx-cotx)(cscx+cotx))^4=1((cscxcotx)(cscx+cotx))4=1

(csc^2x-cot^2x)^4=1(csc2xcot2x)4=1

csc^2x-cot^2x=+-1csc2xcot2x=±1

csc^2x-cot^2x=1. :. csc^2x=1+cot^2x, Infinite solutions

csc^2x-cot^2x=-1, :. 1+cot^2x-cot^2x=-1, no solution