Prove trigonometric identities?
Oh man, I am so lost!
#cos(x-y)/(cosx cosy) = 1+tanxtany#
Any advice on where to start?
Oh man, I am so lost!
Any advice on where to start?
2 Answers
See explanation
Explanation:
We want to prove
#cos(x-y)/(cos(x)cos(y))=1+tan(x)tan(y)#
Remember the angle-difference identity
#color(blue)((1) color(white)(BB)cos(x-y)=cos(x)cos(y)+sin(x)sin(y)#
Thus
#LHS=cos(x-y)/(cos(x)cos(y))#
#color(white)(LHS)=(cos(x)cos(y)+sin(x)sin(y))/(cos(x)cos(y)) larr "(1)"#
#color(white)(LHS)=(cos(x)cos(y))/(cos(x)cos(y))+(sin(x)sin(y))/(cos(x)cos(y))#
#color(white)(LHS)=1+((sin(x))/cos(x))(sin(y)/cos(y))#
#color(white)(LHS)=1+tan(x)tan(y)=RHS#
Explanation:
#"using the "color(blue)"trigonometric identity"#
#•color(white)(x)cos(x-y)=cosxcosy+sinxsiny#
#"consider the left side"#
#(cosxcosy+sinxsiny)/(cosxcosy)#
#=(cancel(cosxcosy))/cancel(cosxcosy)+(sinxsiny)/(cosxcosy)#
#=1+sinx/cosx xxsiny/cosy#
#=1+tanxtany=" right side"rArr"verified"#