Integral of (12sinx-2cosx+3)/(sinx+cosx) ?
1 Answer
Explanation:
We want to solve
#I=int(12sin(x)-2cos(x)+3)/(sin(x)+cos(x))#
Let's split this into two separate integral
#I=int(12sin(x)-2cos(x))/(sin(x)+cos(x))dx+int3/(sin(x)+cos(x))dx#
First integral
Let
#I_1=int(12sin(x)-2cos(x))/(sin(x)+cos(x))dx#
Consider the much easier integral
#I_M=Aint(sin(x)+cos(x))/(sin(x)+cos(x))dx+Bint(cos(x)-sin(x))/(sin(x)+cos(x))dx#
Now determinate the constants
#A-B=12# and#A+B=-2#
Thus
#I_1=5int(sin(x)+cos(x))/(sin(x)+cos(x))dx-7int(cos(x)-sin(x))/(sin(x)+cos(x))dx#
#color(white)(I_1)=5x-7ln(cos(x)+sin(x))+C_1#
Second integral
Let
#I_2=int3/(sin(x)+cos(x))dx#
Substitute
#I_2=6int1/((2u)/(1+u^2)+(1-u^2)/(1+u^2))*1/(u^2+1)du#
#color(white)(I_2)=6int1/(-u^2+2u+1)du#
#color(white)(I_2)=6int1/(2-(u-1)^2)du#
Let
#I_2=6int1/(2-s^2)ds#
#color(white)(I_2)=3int1/(1-(s/sqrt(2))^2)ds#
#color(white)(I_2)=6/sqrt(2)tanh^-1(s/sqrt(2))+C_1#
Substitute back
#I_2=6/sqrt(2)tanh^-1((tan(x/2)-1)/sqrt(2))+C_1#
Combining these
Hopefully not too many typos :-)