What is the simplified form of (x-3)/(x^2+x-12) * (x+4)/(x^2 + 8x + 16)x−3x2+x−12⋅x+4x2+8x+16?
1 Answer
Jun 12, 2018
Explanation:
First, factor the fractions:
(x-3)/(x^2+x-12) * (x+4)/(x^2+8x+16)x−3x2+x−12⋅x+4x2+8x+16
(x-3)/((x-3)(x+4)) * (x+4)/((x+4)(x+4))x−3(x−3)(x+4)⋅x+4(x+4)(x+4)
Now, combine them:
((x-3)(x+4))/((x-3)(x+4)^3)(x−3)(x+4)(x−3)(x+4)3
(cancel((x-3))cancel((x+4)))/(cancel((x-3))(x+4)^(cancel3 color(white)"." color(red)2))
1/(x+4)^2
Or if you want to expand it back out:
1/(x^2+8x+16)
Final Answer