How do you find general form of circle with endpoints of a diameter at (4,3) and (0,1)?

1 Answer
Jun 14, 2018

x^x+y^2+4x+4y-9=0xx+y2+4x+4y9=0

Explanation:

eqn. of circle

(x-a)^2+(y-b)^2=r^2(xa)2+(yb)2=r2

(a,b)=" the centre"(a,b)= the centre

r=" the radius"r= the radius

centre is the midpoint of the diameter

(a,b)=((4+0)/2,(3+1)/2)(a,b)=(4+02,3+12)

(a,b)=(2,2)(a,b)=(2,2)

r=sqrt((2-0)^2+(2-1)^2)r=(20)2+(21)2

r=sqrt(4^2+1^2)=sqrt17r=42+12=17

eqn.

(x-2)^2+(y-2)^2=17(x2)2+(y2)2=17

x^2+y^2-4x-4y+8=17x2+y24x4y+8=17

x^x+y^2-4x-4y-9=0xx+y24x4y9=0