If #f(x)=x^3-3-2x#, and #g(x)=x-1#, what is #(f*g)(x)#?
2 Answers
Jun 18, 2018
Explanation:
Jun 18, 2018
Explanation:
#(f*g)(x)=f(x)xxg(x)#
#=(x^3-3-2x)(x-1)#
#=color(red)(x^3)(x-1)color(red)(-3)(x-1)color(red)(-2x)(x-1)#
#=x^4-x^3color(blue)(-3x)+3-2x^2color(blue)(+2x)#
#=x^4-x^3-2x^2-x+3#