If #f(x)=x^3-3-2x#, and #g(x)=x-1#, what is #(f*g)(x)#?

2 Answers
Jun 18, 2018

#x^3-3*x^2+x-2#

Explanation:

#(f*g)(x)=f(g(x))#
#f(g(x))=(x-1)^3-2(x-1)-3#
#=x^3-3*x^2+x-2#

Jun 18, 2018

#x^4-x^3-2x^2-x+3#

Explanation:

#(f*g)(x)=f(x)xxg(x)#

#=(x^3-3-2x)(x-1)#

#=color(red)(x^3)(x-1)color(red)(-3)(x-1)color(red)(-2x)(x-1)#

#=x^4-x^3color(blue)(-3x)+3-2x^2color(blue)(+2x)#

#=x^4-x^3-2x^2-x+3#