What is the arc length of the curve given by #x = t^2-t# and #y= t^2 -1#, for # 1<t<5#?

1 Answer
Jun 18, 2018

#L=1/8(19sqrt181-3sqrt5)+1/(8sqrt2)ln((19+sqrt262)/(3+sqrt10))# units.

Explanation:

#x=t^2-t#
#x'=2t-1#

#y=t^2-1#
#y'=2t#

Arc length is given y:

#L=int_1^5sqrt((2t-1)^2+(2t)^2)dt#

Expand the squares:

#L=int_1^5sqrt(8t^2-4t+1)dt#

Complete the square:

#L=1/sqrt2int_1^5sqrt((4t-1)^2+1)dt#

Apply the substitution #4t-1=tantheta#:

#L=1/(4sqrt2)intsec^3thetad theta#

This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:

#L=1/(8sqrt2)[secthetatantheta+ln|sectheta+tantheta|]#

Reverse the substitution:

#L=1/(8sqrt2)[(4t-1)sqrt((4t-1)^2+1)+ln|(4t-1)+sqrt((4t-1)^2+1)|]_1^5#

Insert the limits of integration:

#L=1/(8sqrt2)(19sqrt262-3sqrt10+ln((19+sqrt262)/(3+sqrt10)))#

Hence

#L=1/8(19sqrt181-3sqrt5)+1/(8sqrt2)ln((19+sqrt262)/(3+sqrt10))#