Pleas, how solve: Integrade 1/[x^2 Root(9+4x^2)] dx?

enter image source here

2 Answers
Jun 19, 2018

Use the substitution #2x=3tantheta#.

Explanation:

Let

#I=int1/(x^2sqrt(9+4x^2))dx#

Apply the substitution #2x=3tantheta#:

#I=int1/((9/4tan^2theta)(3sectheta))(3/2sec^2thetad theta)#

Simplify:

#I=2/9intcscthetacotthetad theta#

Integrate directly:

#I=-2/9csctheta+C#

Rewrite in terms of #3tantheta# and #3sectheta#:

#I=-2/9 (3sectheta)/(3tantheta)+C#

Reverse the substitution:

#I=-2/9sqrt(9+4x^2)/(2x)+C#

Simplify:

#I=-sqrt(9+4x^2)/(9x)+C#

Jun 19, 2018

#int1/(x^2sqrt(9+4x^2))dx=-sqrt(9+4x^2)/(9x)+C#

Explanation:

.

#int1/(x^2sqrt(9+4x^2))dx#

We need to use trigonometric substitution to solve this integral. Let's first set up our right triangle and write the three basic trigonometric functions for our angle #alpha#:

enter image source here

Assigning measurements of #3 and 2x# to the sides and using the Pythagorean formula gives us the measure of the hypotenuse:

#("Hypotenuse")^2=3^2+(2x)^2=9+4x^2#

#"Hypotenuse"=sqrt(9+4x^2#

#sinalpha=(2x)/sqrt(9+4x^2)#

#cosalpha=3/sqrt(9+4x^2)#

#tanalpha=(2x)/3#

#int1/(x^2sqrt(9+4x^2))dx=int(1/x^2)(1/sqrt(9+4x^2))(dx)#

We need to find each of the three pieces in the integral argument in terms of trigonometric functions in order to substitute them in.

From the tangent equation:

#3tanalpha=2x, :. x=(3tanalpha)/2, :. x^2=(9tan^2alpha)/4#

#1/x^2=4/(9tan^2alpha)#

From the cosine function:

#1/sqrt(9+4x^2)=cosalpha/3#

Taking the derivative of the tangent function, we get:

#3tanalpha=2x#

#3sec^2alphadalpha=2dx#

#dx=(3sec^2alphadalpha)/2#

Now, let's substitute:

#int1/(x^2sqrt(9+4x^2))dx=int(1/x^2)(1/sqrt(9+4x^2))(dx)=int(4/(9tan^2alpha))(cosalpha/3)((3sec^2alpha)/2)dalpha=int(2(2))/((9sin^2alpha)/cos^2alpha)(cosalpha/3)(3/(2cosalphacosalpha))dalpha=int(2cancel(color(red)((2))))/((9sin^2alpha)/cos^2alpha)(cancelcolor(green)(cosalpha)/cancelcolor(red)(3))(cancelcolor(red)(3)/(cancelcolor(red)(2)cancelcolor(green)(cosalpha)cosalpha))dalpha=#

#int(2cosalphacosalpha)/(9sin^2alpha)*1/cosalphadalpha=#

#int(2cancelcolor(red)(cosalpha)cosalpha)/(9sin^2alpha)*1/cancelcolor(red)(cosalpha)dalpha=int(2cosalpha)/(9sin^2alpha)dalpha=#

#2/9intcosalpha/sinalpha(1/sinalpha)dalpha=#

#2/9intcotalphacscalphadalpha=-2/9cscalpha+C#

Now, we can substitute back for #cscalpha#:

From the sine function above:

#cscalpha=1/sinalpha=1/((2x)/sqrt(9+4x^2))=sqrt(9+4x^2)/(2x)#

#int1/(x^2sqrt(9+4x^2))dx=-2/9*sqrt(9+4x^2)/(2x)+C=#

#-cancelcolor(red)(2)/9*sqrt(9+4x^2)/(cancelcolor(red)(2)x)+C=-sqrt(9+4x^2)/(9x)+C#