What is #int_(0)^(6) (1+x)^3(12-2x)^(3/2)dx #?
1 Answer
Jun 19, 2018
Explanation:
Let
#I=int_0^6(1+x)^3(12-2x)^(3/2)dx#
Apply the substitution
#I=1/8int_0^sqrt12(14-u^2)^3u^4du#
Expand the cube:
#I=1/8int_0^sqrt12(2744u^4-588u^6+42u^8-u^10)du#
Integrate term by term:
#I=1/8[2744/5u^5-84u^7+14/3u^9-1/11u^11]_0^sqrt12#
Insert the limits of integration:
#I=(sqrt12)^5/1320(90552-13860(sqrt12)^2+770(sqrt12)^4-15(sqrt12)^6)#
Simplify:
#I=(12sqrt3)/55(90552-13860(12)+770(12)^2-15(12)^3)#
Hence
#I=(110304sqrt3)/55#