Given cosθ=420, where 0θ180 ?

1 Answer
Jun 20, 2018

θ153.4

Explanation:

Given cos(θ)=420,0θ180

Use the inverse cosine on both sides:

θ=cos1(420),0θ180

θ153.4

You have the value for the cosine function the denominator should be rationalized:

cos(θ)=420

cos(θ)=425

cos(θ)=255

The secant function is the reciprocal of the cosine function:

sec(θ)=1cos(θ)

sec(θ)=52

The sine function can be found using the identity:

sin(θ)=±1cos2(θ)

sin(θ)=± 1(255)2

sin(θ)=±25252025

sin(θ)=±55

We know that the sine function is positive in the second quadrant:

sin(θ)=55

The cosecant function is the reciprocal of the sine function:

csc(θ)=1sin(θ)

csc(θ)=55

csc(θ)=5

Find the tangent function using the identity:

tan(θ)=sin(θ)cos(θ)

tan(θ)=55255

tan(θ)=12

The cotangent function is the reciprocal of the tangent function:

cot(θ)=2