How do you integrate?
#int 1/(x+sqrt(x^2-2x-3))dx#
1 Answer
Explanation:
Let
#I=int1/(x+sqrt(x^2-2x-3))dx#
Rationalize:
#I=int1/(x+sqrt(x^2-2x-3))*(x-sqrt(x^2-2x-3))/(x-sqrt(x^2-2x-3))dx#
Simplify:
#I=int(x-sqrt(x^2-2x-3))/(2x+3)dx#
Rearrange:
#I=1/2int(1-3/(2x+3))dx-intsqrt(x^2-2x-3)/(2x+3)dx#
Complete the square in the square root:
#I=1/2(x-3/2ln|2x+3|)-intsqrt((x-1)^2-4)/(2x+3)dx#
Apply the substitution
#I=1/2x-3/4ln|2x+3|-int(2tantheta)/(4sectheta+5)(2secthetatanthetad theta)#
Simplify:
#I=1/2x-3/4ln|2x+3|-4int(tan^2theta/(4sectheta+5))secthetad theta#
Since
#I=1/2x-3/4ln|2x+3|-1/4int(4sectheta-5+9/(4sectheta+5))secthetad theta#
Rearrange:
#I=1/2x-3/4ln|2x+3|-1/4int(4sec^2theta-5sectheta)d theta-9/4int1/(4+5costheta)d theta#
Apply the trigonometric identity
#I=1/2x-3/4ln|2x+3|-1/4(4tantheta-5ln|2sectheta+2tantheta|)-9/4int1/(10cos^2(theta/2)-1)d theta#
Rearrange:
#I=1/2x-3/4ln|2x+3|-1/2(2tantheta)+5/4ln|2sectheta+2tantheta|-9/4intsec^2(theta/2)/(9-tan^2(theta/2))d theta#
Apply the difference of squares and partial fraction decomposition:
#I=1/2x-3/4ln|2x+3|-1/2(2tantheta)+5/4ln|2sectheta+2tantheta|-3/8int(1/(3+tan(theta/2))+1/(3-tan(theta/2)))sec^2(theta/2)d theta#
Integrate directly:
#I=1/2x-3/4ln|2x+3|-1/2(2tantheta)+5/4ln|2sectheta+2tantheta|-3/4(ln|3+tan(theta/2)|-ln|3-tan(theta/2)|)+C#
Since
#I=1/2x-3/4ln|2x+3|-1/2(2tantheta)+5/4ln|2sectheta+2tantheta|-3/4ln|(6+3(2sectheta)+2tantheta)/(6+3(2sectheta)-2tantheta)|+C#
Reverse the substitution:
#I=1/2x-3/4ln|2x+3|-1/2sqrt(x^2-2x-3)+5/4ln|x-1+sqrt(x^2-2x-3)|-3/4ln|(3x+3+sqrt(x^2-2x-3))/(3x+3-sqrt(x^2-2x-3))|+C#
Collect terms:
#I=1/2(x-sqrt(x^2-2x-3))+5/4ln|x-1+sqrt(x^2-2x-3)|-3/4ln|(2x+3)*((3x+3+sqrt(x^2-2x-3))/(3x+3-sqrt(x^2-2x-3)))|+C#