For #x!=0# let:
#a_n = sqrt(4n^2x^2-1)/(4n^2)#
and:
#b_n = 1/(2nabsx)#
Now:
#lim_(n->oo) a_n/b_n = lim_(n->oo) 2nabsx sqrt(4n^2x^2-1)/(4n^2)#
#lim_(n->oo) a_n/b_n = x lim_(n->oo) sqrt(4n^2x^2-1)/(2n)#
#lim_(n->oo) a_n/b_n = absx lim_(n->oo) sqrt((4n^2x^2-1)/(4n^2))#
#lim_(n->oo) a_n/b_n = absx lim_(n->oo) sqrt(x^2-1/(4n^2))#
#lim_(n->oo) a_n/b_n = x^2 #
Based on the limit comparison test, for any #x!=0# the limit is finite and non null, so that the series must have the same characteristic.
But:
#sum_(n=0)^oo 1/(2nabsx) = 1/(2absx)sum_(n=0)^oo1/n#
is divergent, so also:
#sum_(n=0)^oo sqrt(4n^2x^2-1)/(4n^2)#
is divergent.