Pleas, how solve this integral ?

enter image source here

1 Answer
Jun 24, 2018

Use the substitutions #x-3=u# and #2u+5=5sectheta#.

Explanation:

Given

#I=int_4^7sqrt((x+2)/(x-3))dx#

Apply the substitution #x-3=u#:

#I=int_1^4sqrt((u+5)/u)du#

Multiply numerator and denominator by #sqrt(u+5)#:

#I=int_1^4(u+5)/sqrt(u^2+5u)dx#

Rearrange:

#I=1/2int_1^4(2u+5)/sqrt(u^2+5u)du+5/2int_1^4 1/sqrt(u^2+5u)du#

Complete the square in the denominator:

#I=[sqrt(u^2+5u)]_1^4+5int_1^4 1/sqrt((2u+5)^2-25)du#

Apply the substitution #2u+5=5sectheta#:

#I=6-sqrt6+5/2intsecthetad theta#

Integrate directly:

#I=6-sqrt6+5/2[ln|5sectheta+5tantheta|]#

Reverse the last substitution:

#I=6-sqrt6+5/2[ln|(2u+5)+sqrt((2u+5)^2-25)|]_1^4#

Insert the limits of integration:

#I=6-sqrt6+5/2ln(25/(7+2sqrt6))#