(ln^2 x)/x integral from 1 to e^2 is?

#int_1^(e^2)ln^2x/xdx# =?

2 Answers
Jun 24, 2018

#I=8/3#

Explanation:

We want to evaluate

#I=int_1^(e^2)ln^2(x)/xdx#

Make a substitution #color(blue)(u=ln(x)=>du=1/xdx#

New limits #color(blue)(x=1=>u=0# and #color(blue)(x=e^2=>u=2#

#I=int_0^2 u^2/x*xdu=int_0^2 u^2du=1/3[u^3]_0^2=8/3#

Jun 24, 2018

#8/3#

Explanation:

to integrate #int_1^(e^2)ln^2x/xdx# first
substitute #u=lnx# so #(du)/dx=1/x# therby #dx=xdu# and #x=e^u#
plugging this in will give:
#int_0^2u^2/e^u*e^udu# the #e^u# cancels out and we get:
#int_0^2u^2du# now we can use power rule to get:
#u^3/3|_0^2# now we can resubstitute #u=lnx#
and we will get: #ln^3x/3|_1^(e^2)# which we can calculate as follows: #ln^3(e^2)/3-ln^3(1)/3=8/3-0/3=8/3#