Integrate x/(x-1)(x^2+4) dx ?

1 Answer
Jun 25, 2018

intx/((x-1)(x²+4))dx=1/5ln|x-1|-1/10ln(x²+4)+2/5tan^(-1)(x/2)+C, C in RR

Explanation:

intx/((x-1)(x²+4))dx
Let x/((x-1)(x²+4))=A/(x-1)+(Bx+C)/(x²+4)
So:
x=(A+B)x²+(C-B)x+4A-C
By identification :
A+B=0[1]
C-B=1[2]
4A-C=0 [3]

[3]<-[3]+[2]+[1]

A+B=0[1]
C-B=1[2]
5A=1[3]
<=>
B=-1/5
C=4/5
A=1/5

So:
intx/((x-1)(x²+4))dx=int((1/5)/(x-1)+(-x+4)/(5(x²+4)))dx
=1/5int1/(x-1)dx-1/5int(x-4)/(x²+4)dx
=1/5ln|x-1|-1/10int(2x)/(x²+4)dx+4/5int1/(x²+4)dx
=1/5ln|x-1|-1/10ln(x²+4)+2/5tan^(-1)(x/2)+C, C in RR
\0/ here's our answer !