Find Cartesian form of equation r=9cos (theta)?

2 Answers
Jun 26, 2018

#x^2+y^2-9x=0#

Explanation:

we need the rectangular #rarr#Polar transformations

#r^2=x^2+y^2#

#x=rcostheta#

#y=rsintheta#

we have

#r=9costheta#

multiply by #r#

#r^2=9rcostheta#

using the transformations above

#x^2+y^2=9x#

#x^2+y^2-9x=0#

Jun 26, 2018

#x^2-9x+y^2=0#

Explanation:

#"to convert from "color(blue)"polar to cartesian"#

#•color(white)(x)r=sqrt(x^2+y^2)#

#•color(white)(x)x=rcosthetarArrcostheta=x/r#

#r=(9x)/r#

#"multiply through by "r#

#r^2=9x#

#x^2+y^2=9x#

#x^2-9x+y^2=0#

#(x-9/2)^2+y^2=81/4#

#"which is the equation of a circle "#

#"centre "=(9/2,0)," radius "=9/2#