How I integrate this?
#int_0^(1/2)dx/(4-5sqrt(1-x^2)#
2 Answers
Rationalize the denominator then use lots of partial fraction decompositions.
Explanation:
Let
#I=int_0^(1/2)dx/(4-5sqrt(1-x^2))#
Rationalize:
#I=int_0^(1/2)dx/(4-5sqrt(1-x^2))*((4+5sqrt(1-x^2))/(4+5sqrt(1-x^2)))#
Simplify:
#I=int_0^(1/2)(4+5sqrt(1-x^2))/(25x^2-9)dx#
Integration is distributive:
#I=4int_0^(1/2)1/(25x^2-9)dx+5int_0^(1/2)sqrt(1-x^2)/(25x^2-9)dx#
Rearrange:
#I=-4int_0^(1/2)1/((3+5x)(3-5x))dx+5int_0^(1/2)(1-x^2)/(25x^2-9)dx/sqrt(1-x^2)#
Apply partial fraction decomposition:
#I=-2/3int_0^(1/2)(1/(3+5x)+1/(3-5x))dx-1/5int_0^(1/2)(1-16/(25x^2-9))dx/sqrt(1-x^2)#
Apply the substitution
#I=-2/15[ln|3+5x|-ln|3-5x|]_ 0^(1/2)-1/5int_0^(pi/6)(1-16/(25sin^2theta-9))d theta#
Integration is distributive:
#I=-2/15ln(11)-1/5int_0^(pi/6)d theta+16/5int_0^(pi/6)1/(25sin^2theta-9)d theta#
Rearrange:
#I=-2/15ln(11)-pi/30+16/5int_0^(pi/6)sec^2theta/(25tan^2theta-9sec^2theta)d theta#
Since
#I=-2/15ln(11)-pi/30+16/5int_0^(pi/6)sec^2theta/(16tan^2theta-9)d theta#
Apply the difference of squares:
#I=-2/15ln(11)-pi/30-16/5int_0^(pi/6)sec^2theta/((3+4tantheta)(3-4tantheta))d theta#
Apply partial fraction decomposition:
#I=-2/15ln(11)-pi/30-8/15int_0^(pi/6)(1/(3+4tantheta)+1/(3-4tantheta))sec^2thetad theta#
Integrate term by term:
#I=-2/15ln(11)-pi/30-2/15[ln|3+4tantheta|-ln|3-4tantheta|]_0^(pi/6)#
Insert the limits of integration:
#I=-2/15ln(11)-pi/30-2/15ln((3sqrt3+4)/(3sqrt3-4))#
Rationalize:
#I=-2/15ln(11)-pi/30-2/15ln((3sqrt3+4)^2/11)#
Simplify:
#I=-pi/30-4/15ln(3sqrt3+4)#
Explanation:
Let,
Subst.ing
When
When
For
Further,
Utilising