(dR)/(dS) = k (R/S)dRdS=k(RS) R=?

1 Answer
Jun 28, 2018

R = CS^kR=CSk where C is an arbitrary constant.

Explanation:

Given: (dR)/(dS) = k (R/S)dRdS=k(RS)

Use the separation of variables method:

(dR)/R = k (dS)/SdRR=kdSS

Integrate both sides:

int(dR)/R = kint (dS)/SdRR=kdSS

ln(R) = kln(S)+ Cln(R)=kln(S)+C

ln(R) = ln(S^k)+ Cln(R)=ln(Sk)+C

e^(ln(R)) = e^(ln(S^k)+ C)eln(R)=eln(Sk)+C

R = e^Ce^ln(S^k)R=eCeln(Sk)

R = e^CS^kR=eCSk

R = CS^kR=CSk where C is an arbitrary constant.