If alpha +beta -gamma =piα+βγ=π Prove that (sin^2alpha + sin^2beta - sin^2gamma)=(sin2α+sin2βsin2γ)=2sin alpha ×2sin beta ×2 cos gamma#?

1 Answer
Jul 9, 2018

LHS=sin^2alpha+sin^2beta-sin^2gammaLHS=sin2α+sin2βsin2γ

=1/2(1-cos2alpha)+1/2(1-cos2beta)-1/2(1-cos2gamma)=12(1cos2α)+12(1cos2β)12(1cos2γ)

=1/2(1+cos2gamma-(cos2alpha+cos2beta))=12(1+cos2γ(cos2α+cos2β))

=1/2(2cos^2gamma-(2cos(alpha+beta)cos(alpha-beta))=12(2cos2γ(2cos(α+β)cos(αβ))

=cos^2gamma-cos(pi+gamma)cos(alpha-beta)=cos2γcos(π+γ)cos(αβ)
=cosgamma*cosgamma+cosgammacos(alpha-beta)=cosγcosγ+cosγcos(αβ)

=cosgamma*cosgamma+cosgammacos(alpha-beta)=cosγcosγ+cosγcos(αβ)

=cosgamma(cos(alpha-beta)+cos(alpha+beta-pi))=cosγ(cos(αβ)+cos(α+βπ))

=cosgamma(cos(alpha-beta)-cos(alpha+beta))=cosγ(cos(αβ)cos(α+β))

=cosgamma*2sinalphasinbeta=cosγ2sinαsinβ