LHS=sin^2alpha+sin^2beta-sin^2gammaLHS=sin2α+sin2β−sin2γ
=1/2(1-cos2alpha)+1/2(1-cos2beta)-1/2(1-cos2gamma)=12(1−cos2α)+12(1−cos2β)−12(1−cos2γ)
=1/2(1+cos2gamma-(cos2alpha+cos2beta))=12(1+cos2γ−(cos2α+cos2β))
=1/2(2cos^2gamma-(2cos(alpha+beta)cos(alpha-beta))=12(2cos2γ−(2cos(α+β)cos(α−β))
=cos^2gamma-cos(pi+gamma)cos(alpha-beta)=cos2γ−cos(π+γ)cos(α−β)
=cosgamma*cosgamma+cosgammacos(alpha-beta)=cosγ⋅cosγ+cosγcos(α−β)
=cosgamma*cosgamma+cosgammacos(alpha-beta)=cosγ⋅cosγ+cosγcos(α−β)
=cosgamma(cos(alpha-beta)+cos(alpha+beta-pi))=cosγ(cos(α−β)+cos(α+β−π))
=cosgamma(cos(alpha-beta)-cos(alpha+beta))=cosγ(cos(α−β)−cos(α+β))
=cosgamma*2sinalphasinbeta=cosγ⋅2sinαsinβ