We have ABC a scalene triangle, and a point M in plane of this triangle. How to prove that vec(AB)*vec(CM)+vec(AC)*vec(MB)+vec(AM)*vec(BC) = 0?

2 Answers
Jul 10, 2018

Please see the proof below

Explanation:

Apply Chasles' Relation

vec(AB)*vec(CM)=(vec(AM)+vec(MB))vec(CM)=vec(AM)*vec(CM)+vec(MB)*vec(CM)

vec(AC)*vec(MB)=(vec(AM)+vec(MC))vec(MB)=vec(AM)*vec(MB)+vec(MC)*vec(MB)

vec(BC)*vec(AM)=(vec(BM)+vec(MC))vec(AM)=vec(BM)*vec(AM)+vec(MC)*vec(AM)

But,

vec(CM)=-vec(MC)

vec(MB)=-vec(BM)

Therefore, Adding the first 3 equations

(vec(AB)*vec(CM)+vec(AC)*vec(MB)+vec(BC)*vec(AM))

=vec(AM)*vec(CM)+vec(MB)*vec(CM)+vec(AM)*vec(MB)+vec(MC)*vec(MB)+vec(BM)*vec(AM)+vec(MC)*vec(AM)

=vec(AM)*vec(CM)-vec(AM)*vec(CM)+vec(MB)*vec(CM)-vec(MB)*vec(CM)+vec(AM)*vec(MB)-vec(AM)*vec(MB)

=0

Jul 10, 2018

enter image source here

We have ABC a scalene triangle, and a point M in the plane of this triangle. We are to prove that vec(AB)*vec(CM)+vec(AC)*vec(MB)+vec(AM)*vec(BC) = 0

Now by triangle law we have

For DeltaABC,vec(AB)=vec(AC)+vec(CB)....[1]

For DeltaBMC,vec(CM)=vec(CB)-vec(MB).. .[2]

For DeltaAMC,vec(CM)=vec(AM)-vec(AC).. .[3]

Now using [1] we get

vec(AB)*vec(CM)=vec(AC)*vec(CM)+vec(CB)*vec(CM)

=>vec(AB)*vec(CM)=vec(AC)*vec(CM)-vec(BC)*vec(CM)

=>vec(AB)*vec(CM)=vec(AC)*(vec(CB)-vec(MB))-vec(BC)*(vec(AM)-vec(AC))

=>vec(AB)*vec(CM)=-vec(AC)*vec(BC)-vec(AC)*vec(MB)-vec(BC)*vec(AM)+vec(BC)vec(AC)

=>vec(AB)*vec(CM)+vec(AC)*vec(MB)+vec(AM)*vec(BC) = 0