A ship is anchored off a long straight shoreline that runs north and south. From two observation points 15 mi apart on shore, the bearings of the ship are N 31 degrees E and S 53 degrees E. What is the shortest distance from the ship to the shore?

1 Answer
Jul 13, 2018

#color(magenta)(6.2# #"miles to the nearest 1 decimal place"#

Explanation:

#:."Let the triangle with the ship and shorline be ABC and let the shortest distance be AD"#

#:.angle ADC and angle ADB=90^@#

#:.In triangle ABD angle "BAD"= 180^@-(90^@+31^@)=59^@#

#:.In triangle ACD angle "CAD"= 180^@-(90^@+53^@)=37^@#

#:.angle BAC=59^@+37^@=96^@#

Sine rule

#:.(AB)/sinC=(BC)/sinA#

#:.AB=(BC*sinC)/sin A#

#:.AB=(15*sin 53)/sin 96^@#

#:.AB=12.046mi#

#:.AD=sin31^@*12.046#

#:.color(magenta)(=6.204mi="shortest distance"#

check:-

#:.(AC)/sinB=(AB)/sinC#

#:.(AC)/(sin31^@)=(12.046*sin31)/sin53^@#

#:.AC=7.768mi#

#:.color(magenta)(AD=cos37^@*7.768=6.204mi#