If log_10x+log_10y.>=2log10x+log10y.2 the minimum value of x+y=x+y=?

1 Answer
Jul 16, 2018

Given

log_10x+log_10y>=2log10x+log10y2

Here x>0andy>0x>0andy>0

=>log_10(xy)>=log_10(10^2)log10(xy)log10(102)

=>xy>=100xy100

So minimum value of xy=100xy=100

Now x+y=(sqrtx-sqrty)^2+2sqrt(xy)x+y=(xy)2+2xy

x+yx+y will be minimum when x=yx=y

So minimum value of y will be such that y^2=100=>y=10y2=100y=10

Hence minimum value of

(x+y)_"min"=10+10=20(x+y)min=10+10=20