How do you differentiate f(x) = sin(x²)?

2 Answers
Jul 22, 2018

(df)/(dx)=2xcos(x^2)

Explanation:

Let f(x)=sin(g(x)) and g(x)=x^2

hence (df)/(dx)=(df)/(dg)xx(dg)/(dx)

= cos(g(x))xx2x

= 2xcos(g(x))

= 2xcos(x^2)

f'(x)=2x\cos(x^2)

Explanation:

Given function:

f(x)=\sin(x^2)

Differentiating above function w.r.t. x using chain rule:

d/dxf(x)=d/dx\sin(x^2)

f'(x)=\cos(x^2)\frac{d}{dx}(x^2)

=\cos(x^2)(2x)

=2x\cos(x^2)