If #loga/(b-c)=logb/(c-a)=logc/(a-b)# then the numerical value of #a^a*b^b*c^c=?#
2 Answers
Jul 24, 2018
Let
then considering 10 base logarithm we get
-
#a=10^(k(b-c)# -
#b=10^(k(c-a)# -
#c=10^(k(a-b)#
So
-
#a^a=10^(k(ab-ca)# -
#b^b=10^(k(bc-ab)# -
#c^c=10^(k(ca-bc)#
Hence the numerical value of
Jul 24, 2018
Explanation:
Set
Now,
derived!