The maximum value of f(x)=(3sinx4cosx10)(3sinx+4cosx10) is?

2 Answers
Jul 25, 2018

f(x)=(3sinx4cosx10)(3sinx+4cosx10)

=((3sinx10)4cosx)((3sinx10)+4cosx)

=(3sinx10)2(4cosx)2

=9sin2x60sinx+10016cos2x

=9sin2x60sinx+10016+16sin2x

=25sin2x60sinx+84

=(5sinx)225sinx6+6262+84

=(5sinx6)2+48

f(x) will be maximum when (5sinx6)2 is maximum . It will be possible for sinx=1

So

[f(x)]max=(5(1)6)2+48=169

Jul 25, 2018

Maximum is 169. Minimum is 50 (perhaps, nearly). This is graphical illustration, for Dilip's answer.

Explanation:

Let α=sin1(45)..Then

f(x)=25(sin(xα)2)(sin(x+α)2)
See graph.
graph{(y - 25 (sin (x- 0.9273)-2)(sin (x+ 0.9273)-2))(y-169)(y-50)=0[-20 20 20 230]}
graph{(y - 25 (sin (x- 0.9273)-2)(sin (x+ 0.9273)-2))(y-169)=0[-1.75 -1.5 167 171]}